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AN EXPERIMENTAL INVESTIGATION ON THE SUBCRITICIL INSTABILITY IN PLANE
POISEUILLEFIDW

! i

Nishioka,T.; Honda,S.; and Kamibayashi,S.

I. Introduction

This is a continuation of the experiments concerning stability and transition /55"

in plane Poiseuille flow. As the first experiments showed 1i, when a certain thres-

hold is crossed, there is spatial amplification even with the T-S wave which is

damped at the time of microamplitude. This subcritical instability is clearly a

nonlinear phenomenon. However, in Blasius flow experiments !_2 4i.., 3, hi, it appeared

that the effects of nonlinearity caused amplification of the three-dimensional

properties and the formation of a peak-rally structure. When this is considered,

the very interesting question of what connection does subcritical instability have
with the three-dimensional properties of the flow comes up. In this investigation

the focus is on "the aspect of the three-dimensional development of the T-S wave".

2. Experimental Apparatus

Figure 1 is a diagram of the channel flow apparatus. The length is 6 m, the

cross section width is _0 cm, height 2h is l.h6 cm and the aspect ratio of the cross

section is 27.4. The materials are the same as used in the first experiments, except

that the damping screen just before constriction was changed. This was done to make

the fundamental flow more three-dimensional than it was in the first experiments.

At the measuring position where a slit was made for the insertion of the heat ray

probe, the flow was found to be sufficiently developed and the turbulence was 0.05%.

In the coordinate system, the x axis is downstream from the mouth of the channel,

the y axis downward from the depth direction center and as shown in the figure,

the z axis takes the span direction. The oscillation ribbon for the introduction

of the T-S wave is in the place where x = 430 cm, attached at a height of approxi-

mately 0.8 mm from the wall (lower wall). The amplitude of the ribbon and the

frequency could be freely changed as desired by adjusting the current. All of the

measuring was done at the z direction slit position 35 cm downstream from the ribbon.

Thus, the x position of the heat ray probe was fixed. By varying the ribbon current

the various states of amplification of the T-S wave could be observed. The probe was

made by combining 2 I shapes, and the y_O flow could be observed constantly.

* Numbers in the margin indicate pagination in the foreign text.
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a U _'_-_:_ 3. Experimental Results and Com- /56-

I_ ,_ g _,._ (_ _..,'_vooT" b _._ Stated in terms of the central

_'_ _ " 600. _ < velocity Vc and the Reynolds number

_30------_ ,),_-'_c based on 1/2 the channel height h...... V"_ ........ (=7.3 ram),the critical Reynolds
e number according to the linear stab-I lit 3 : z !! ij " n'

_-_'" i;i_-"'::':'":": ";'_"i_'":" - confirmed in the previous experiments.
In the present experiment the main

subject is subcritical instability

and the Reynolds number is 5000.

The frequency of the T-S wave isFig. 1. Channel apparatus and coordinates
72 Hz.

Key: a. traverse apparatus
b. heat ray probe
c. ribbon As shown in figure 2, the funda-

d. slit mental flow has made an almost peri-
e. flow
f. units odic change in the span direction and
g. magnet the wave length is 2.6 - 2.7 cm. The

amount of change in velocity is 5%

of the very high central velocity

: U/Uo _/fL_o (Vco is the value where z = 6.5cm). I

1.0-o--_-_ As in figure 3, when we examine the

O.B Fig 2 relationship between V/Vc and y/h

O.s'_ the y distribution describes a para-

o.6 bola. In figure 4, the y distribution

of the amplitude (effective value u')O_

o.86 and phase for the T-S wave at the time

0.2 of microamplitude is compared with

0 , , i , , , , , , ) ' ' ' the results calculated according to

Cc,_) lto' s L..-, linear theory and agree-
ment is good. Effective value u'

Figure 2. takes the maximum value u' near them

I The z direction distribution of V (fundamental flow) measured at the z direction

slit at the position of the ribbon is the same as in figure 2. Consequently, for
the fundamental flow, _/bz--O.
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wall. The phase shifts 180° at cen-

-,0 tral y/h=O, is flat until near y/h =

6 0.75 and changes slightly near the wall.O'

The state of the fluctuation during

'¢ the change of z direction can be seen
.4_' r

I ,_/ ____ __f, in figure 5 which shows the phase at

"_' /__ _(_€_ y/h= 0.73 and the z direction distrib-

6 r _/_13 ution of u'm. This is based on the same

. y distribution data as in figure 4.,t 6.o 65 _.o 7., :.o
-'" When figures 2 and 5 are compared, /57

it is seen that the maximum and rain-
-20"

0 v_,_:) imum positions of the z direction

o" distribution of V, U,m, and @ (phase)

are in mutual agreement. This clearly

:o' shows that the three-dimensional prop-

,s 6o 6_ 7o _, :, erties of the fundamental flow induce

0 _/(:,_.j three-dimensional properties in the

• fluctuation. In order to find out

,, 60 6, _o _s to how these three-dimensional properties

,o'......... ._ , ._ change with an increase of the amp-
,I.1" 0.0 _.S ?e 75 -r,@

• _(cm_ plitude (U'm), the y distribution of
u' and _ were minutely measured at

Figure 7. various values of ribbon current. The

z distributions of the phase _&when

_. u'm and y/h = 0.73 are described from

this y distribution data (recorded on x-y recorder) in figures 6 and 7. Figure 6

clearly shows the peak-valley formation process when the three-dimensional properties
/

are amplified, z = 7.5 cm is a peak and z = 6.4 cm is a valley. In the figure the

state of the flow are given the roman numeral designations II (O.7%),III (0.8%), ....

The values of U'm/Vco at peak position z = 7.5 cm are inside (). As shown in figure

5, the flow at the 0.4% state of microamplitude is called I (0.4%). As we can see in

figure 7, the valley phase compared with that of the peak greatly lags with the in-

crease in amplitude as indicated by II (0.7%), IV (1.4%) and V (3%). The high freq-

uencies become conspicuous with the increase of u'm. The phase shown in figure 7 is

that of the fundamental flow at 72 Hz. For the phase the "advance" is depicted as if

corresponding to the regualr direction, but the point of origin _ = O is arbitrary

not only in figure 7, but in all the figures. Consequently, the "differences" are

always correctly expressed, but the absolute value of the phase has no significance.
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Figure 8. Key: a. The upper side is the ribbon
current and the lower side
is the velocity wave form.

b. ribbon current

/ c. turbulent current

Figure 8 compares the y distributuon of u' and _ of valley position (z = 7.5 cm, e)

with peak position (z = 7.5 cm, O) for the states II -VII based on the previously ment-

ioned x-y recording. The u' and _ distributions of state II (0.7%) are the same as

those of state I (O.h%) (fig. h), and there is almost no difference in distribution for

the valley and peak positions. In state IV (1.h%) the difference is very clear, in that
the peak-valley bifurcation has already occurred. The difference in values for the

peak and valley of u'm gradually starts to become very much greater with the increase in

amplitude. The characteristics of the change in distribution at this time are that in

the case of the peak, the y coordinates of u' move to the center (y_O) while them
corresponding y coordinates in the valley become concave. The characteristics of the

change in the y distribution of the phase are that the phase near the wall "advances"

in the peak and "lags" in the valley compared with the center, and this process



accelerates greatly with the increase of u' As we can see from the distributions ofm •

states VI (6%) and VII (10%), the lag in the valley reaches nearly 2/__. For the valley,

also, when state VII is reached, a 180° jump appears in the vicinity of y/h = 0.4.

This corresponds to the spike wave form in photograph (b) of figure 9. As we can see /59

from this, state VII is where the process of laminar flow collapse begins. Figure 9

is a plot of u'm (total and fundamental at 72 Hz) for the peak and valley as opposed

to ribbon current I. This shows the process of the flow until it reaches the turbulent

stage. It is worth noting that this is very similar to figure 4 of Klebanoff et al.

I2"if. The cross axis I appear_very similar to x. In fact, when considered in the non-

linear field, there are no objections to this. Near the point of origin U'mC _ I.

This is linear behavior and in the present case signifies spatial attenuation. Spatial

amplification increases from when dU'm/dl are linear, but this begins to take place

between II - IV, and moreover, the peak-valley branching begins at almost the same time.

As was noted before, this is an extremely interesting point and will be taken up in

detail later. After the branching very great spatial amplification occurs in the peak

and when the process of collapse begins, there is a sequence of single spike stage

(photograph b), double spike stage (photograph c) and triple spike stage (photograph d)

in which there is transition to the turbulent stage along with the generation of high

frequency fluctuation.

,_'V_ ' Figures IO and II illustrate the
tO !_o_,o,_°,,9 _/A flowof the singlespikestage(VI)

(A) ,, with the instantaneousdistributions
: _Z5 taken from several photographs. Figure

(p,_,,k) °* 10 (a) is the y distribution of thea6

instantaneous velocity at each time of
/ e.t

.°(_q) peak position (the arrow on the cross

. a axis indicates the time when the spike
@)
€_.,,_, _A was lowest, and T is the 1/72 sec. cycle).

,_,.l,, -I';;"'. I °z
o.q.... _, FigurelO (b)is theuniformvelocityline
:',__ _..,_;--__ in the t/T surface. These are very

_7.)_o,-__'_-h_--_ 0, " yo°::_t-_..._-_--._-:.;.!'J_'-'-._kh__-] similartofigure6 (Blasiusflow)
which wasdrawbyTanit6J onthebasis.... . , ...... ,t.o¢l_ )

#r '# ,.o o a of measurements taken from reference _4_.

Figure ll shows the uniform velocity

lines inside the t/T - z surface. In

Figure IO. (a) y/h = 0.86 and in (b) y/h = 0.73.

Key: a. lower wall A noteworthy point is that the uniform

6



If cu'..,/u:. '_' . velocity lines where (V = u))Vco = 0.2

La) _q.__--..___-__ ° _-- _'l and 0.25in (a) and (V = u)/Vco= 0.3,

_A=a____I___._,o 0.35 and 0.2 in (b) resemble the shapes of

turbulent spots. Figure 12 is the z /60

t/_ 20 ,0 _ direction distribution of the uniform

Cb) z_, velocity of the single spike stage. There

_______.._ __ is an indentation in both the peak and

e.v3_______._ valley positions, and as we can see from

*' _70 figure 2, the z direction distortion wave

,¢ length is 1/2 of the original. This wave
r-./-r _o ,_o '

length remains the same as the original

until state V is reached (see figure 9).

Figure ll. Near the wall there is a tendency to be
concave ate,thepeak and to swell at the

valley, but from state VI, as can be seen

_/_. 12 from figure 12 the valley indentation grad-
_/_. ually becomes conspicuous. This is justf.O'.__ o

"__'_'__ _ _0_z0_ exactly the same as the observations by

• _ __ "-__ Klebauoff et al f_i concerning the Blasius
._ _ -_ _ _ -- (Io%)
._a,_ :_ flow. Thus, the development process after

, , the peak-valley bifurcation is the same as

' _s _ _'5'7o _ "to_(,_) in thecaseof Blasiusflow.It is as if
a "transitionorbit"were enteredwhich

Figure12 leadsto suddenlaminarflowcollapseand
turbulence.

13(a) / ..

-72H1 p ' ./¢._ u'el..¢ . /yY¢ " .,:o., f . ,,3(b> ./

V'JI".I _ ,o ___e_ __
0 0.01 O,Oa 0.03

.j u.t/U',.
L.- I J

o ._o ,oo I (,,,A) _o

Figure13 (a) Figure13 (b)



Next, let us look at in detail the state before and after the peak-valley bifur-

cation. In order to do this, the y distribution of u' and the ribbon current were

altered a little at a time and measurements made. In addition to this, a recording was

made in the x-y recorder while comparing the peak and valley positions. On the basis of

this recording u'm/Vco was plotted against ribbon current I as shown in figure 13 (a).

In 13 (b) the ratioL of u'm at the peak and valley positions at times of identical

ribbon current, i.e. U'mp/U'mv is shown versus Ump/VCo. When both figures are compared,
we see that spatial amplification (subcritlcal instability) begins at almost the same /61

time as peak-valley bifurcation. In this case, from figure 13 (b), for the threshold,
-" "V

U'mp/Vco = 0.8%. Based on experimental results concerning Blasius flow 12 j, Tani _7_I

suggests that the threshold amplitude is atthe peak-valley bifurcation and figure '13 (a)

and (b) support this. The same kind of measurements were conducted for f = 42, 47,

52, 55, 57, 62, 67, 77, 82, and 88 Hz. Since this experiment was conducted on a dif-

ferent day, the viscosity was different. Consequently, the raw value of Vco was different

(of course, the Reynolds number was 5000). The results are shown in figure 14 adjusted

to the same form as in figure 13 (b). In order to keep the figure from being difficult

to read, the results for 55 Hz are not shown. The variation in U'm_U'mv accompanying

the increase in U'mp/Vco was the same qualitatively for all frequencies. In all cases

a peak-valley bifurcation appeared at the boundary of a certain threshold. In figure

u'._/u'_ I_ 15 the black dots show this threshold

T5 _= 87_, _2_, (U'mp/Vco)th plotted against dimension-

less frequency/3 _--2;_fh/Vco. The white

dots show the results of the previous

experiment [l_i,and are from observation
,o of the ebb and flow of fluctuation in

o.o, o.,',._ o.o_ U"/_,
_._.,,_. the direction of flow (along the x

Itodirecti°nslit).t"- Thesolidlineshowsthe

• results of calculations made according to

s !'8_two-dimensional nonlinearty

"_ theory. Qualitatively, at _.> O.25
Y.O _ ,._v_:f_ _.--J_1-_ , I I '

oo, o.oa u_lU. theresultsof thisexperimentand the

z_ /-_Z_, previous one are identical, but differ

I._i__ _ _; at_ _O.25. The interesting thing about

this is the reversal of peak and valley

_ at the boundary_ = 0.25 as shown in figure

I.o_'._ ..,_._--------" 16. For example, z = 7.5 cm is a peak

when f = 72 Hz, but at f = 42 Hz there is
I , I I i, I

o ao, o.o_ u_J_ a reversal and a valley appears. Concern-

Figure 14. ing this reversal, it is believed that a

8



(Lll/U,.)a _/5 pure two-dimensionalexplanationcan be
3.0

given for it, Just as in the case of

' _ U_,,14,/ Blasiusflow[2_. In figure17 the
k . !7,, experimentalresultson the spatialam-

...[,/.,l ,.,;'.:..s.>. '' plification rate (-_L) (R = 5300)ViiiAo '_

and the calculated results (R = 5000)

"" ["5_ are compared. By calculation the
)r_/ value of the minimum attenuation rate of

io _ is 0.28 and the experimental results
give 0.25. A z direction change in Vc

I

W results in z direction change in _ and\
c _ -_L, and a u'm maximum is created in the

0 ,- , . , , linear field corresponding to the mini-
0.1 0.2 O.3 ¢._ C.S

/3__1_/_o mum of -4L. Consequently, there is a peak

at the maximum value of Vc (for example

Figure 15 at z = 7.5 cm) when the frequency is

Key: a. Ito within the range of _(--_L)_ O and
b. previous experiment
c. this experiment conversely, a valley..whenthe frequency

in the range of _(-_<L)b$2 0. Theis

experimental results confirm this ex-

,u_/_, 16 actly.
¢<"r f.
z.o gl_4

As was related above concerning the /62

,0 flow in a linear field, from a purely

o . two-dimensional point of view, the extent.I I I _J

3 i _ ti _ _ q ,_((_ of the influence of the T-S wave on

distortion of the fundamental flow strong-

Figure ]6' ly depends on the dimensionless freq-

uency,. This means that the influence

becomes greater as the _ under consider-
-C(
ao_ ation becomes greater. Consequently, it

can be assumed that the peak-valley bi-
i | •

o o, _2 . _ furcation also will come sooner. The

-oo_ (Uim/Vco)th - _ curve obtained in this

experiment (as shown in figure 15) is
-o.o_ /

a _,% in the range of _ & 0.24 and _7 0.38,

and the downward turn is thought to be

Figure 17 due to this influence. That is to say,
it can be assumed that there was probably

Key: a. Ito



'._r ._,--_ a downward turn atA_/_0.2. Of course,

_ ,_,_ the distortion of the fundamental flow isO'_L • , i L J l , , , L i l

o z _ 6 _ _o ,_ also a problem. The z direction distrib-

Figure 18. ution of the Vc of the flow in the previous
experiments and these experiments are

Key: a. this experiment compared in figure 18, and it is clear t_at

b. previous experiment a_s_ortion was greater in these experiments.

One of the probable reasons for this is that

in comparing the two-dimensional calculations and the results of this experiment, the

threshold was smaller in the experiment.

We are concerned about the problem of how the wave length of the three-dimensional

properties (of the fundamental flow), the secondary flow (of the fundamental flow), etc.

are intertwined, but nothing in general can be said about this from these experiments.

Calculated results concerning nonlinear stability in considering three-dimensional

disturbance have been published, but unfortunately, they are not of the sort which can

be directly compared with the results of these experiments.

h. Summar_

These experiments concern an R = 5000 plane Poiseuille flow in which the central

velocity makes an almost cyclic change at %% (peak-to-peak) amplitude. We attempted

to find out What kind of connection the three-dimensional properties of the funda-

: mental flow have with subcrltical instability. The results are as follows:

(I) The T-S wave has three-dimensional properties which are synchronous with the/
fundamental flow, but there is damping at microamplitude.

(2) When the amplitude reaches a certain threshold, subcritical instability and

peak-valley bifurcation occur simultaneously and a peak-valley structure is formed.

(3) This threshold depends to a great extent on the frequency.

(h) After the pe_k-valley bifurcation there is a transition to a turbulent flow

by the process of laminar flow collapse indentical to that in Blaslus flow.

10
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